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Rayleigh - Taylor Gravity Waves and Quasiperiodic Oscillation 
Phenomenon in X-ray Binaries 

Lev Titarchuk ' y 2  

ABSTRACT 

Accretion onto compact objects in X-ray binaries (black hole, neutron star 
(NS), white dwarf) is characterized by non-uniform flow density profiles. Such 
an effect of heterogeneity in presence of gravitational forces and pressure gra- 
dients exhibits Raylegh-Taylor gravity waves (RTGW). They should be seen as 
quasioperiodic wave oscillations (QPO) of the accretion flow in the transition 
(boundary) layer bet,ween the Keplerian disk and the central object. In this pa- 
per I show that the main QPO frequency, which is very close to the Keplerian 
frequency, is split into separate frequencies (hybrid and low branch) under the 
influence of the gravitational forces in the rotational frame of reference. The 
RTGWs must be present and the related QPOs should be detected in any sys- 
tem where the gravity, buoynancy and Coriolis force effects cannot be excluded 
(even in the Earth and solar environments). The observed low and high QPO 
frequencies are an intrinsic signahre of the RTGW. I elaborate the conditions 
for the density profile when the RTGW oscillations are stable. A comparison of 
the inferred QPO frequencies with QPO observations is presented. I find that 
hectohertz frequencies detected from NS binaries can be identified as the RTGW 
low branch frequencies. I also predict that an observer can see the double NS spin 
frequency during the NS long (super) burst events when the pressure gradients 
and buoyant forces are suppressed. The Coriolis force is the only force which 
acts in the rotational frame of reference and its presence causes perfect coherent 
pulsations with a frequency twice of the NS spin. The QPO observations of neu- 
tron binaries have established that the high QPO frequencies do not go beyond 
of the certain upper limit. I explain this observational effect as a result of the 
density profile inversions. Also I demonstrate that a particular problem of t,he 
gravity waves in the rotational frame of reference in the approximation of very 
small pressure gradients is reduced to the problem of the classical oscillator in 

George Mason University/CEOSR/NRL; lev@xip.nrl.navy.mil 

2NASA Goddard Space Flight Center, code 661, Laboratory for High Energy Astrophysics, Greenbelt 
MD 20771; lev@lheapop.gsfc.nasa.gov 



- 2 -  

the rotational frame of reference which was previously introduced and applied 
for the interpretation of kHZ QPO observat,ion by Osherovich & Titarchuk. 

Subject headings: Accretion, accretion disks -(magnetohydrodynamics:) MHD- 
stars:oscillations (including pulsations)- stars: neutron-X-ray:binaries 

1. Introduction 

The theory of oscillations of rotating fluids of variable density [Rayleigh- Taylor (R-T) 
effect] was developed in detail by Chandrasekhar (1961), hereafter C61. A large variety of 
the magnitohydrodynamic (MHD) problems, including the stability of inviscid and viscous 
fluids in the case of two uniform layers separated by a horizontal boundary with and without 
rotation as well as the magnetic field effects were analyzed using perturbation technique. 
The simplest case of a one-dimensional gravitational force was studied. A similar analysis 
was also implemented for the case of an exponentially varying density. It follows from C61 
that the quasiperiodic oscillations (QPO) with the twin “kilohertz” frequencies represent, 
the main frequencies of the stable gravity waves in the rotational frame of reference. It 
also as follows from C61 that the twin “kilohertz” frequencies should be on the order of the 
Keplerian frequency. 

In this Paper I present the results of the study of the R-T effect for a particular case of 
fluid oscillations in an accretion flow under influence of a central gravitational force. This 
particular R-T analysis is important in view of the high and low frequency detection by the 
Rossi X-ray Timing Explorer (RXTE) in a number of low mass X-ray binaries (Strohmayer 
et al. 1996, van der Klis et al. 1996), black hole candidate sources (Morgan, Remillard & 
Greiner 1997; Strohmayer 2001a,b; Remillard 2002) and by Extreme Ultraviolet Explorer, 
Chandra X-ray observatory and optical observations in white dwarfs (Mauche 2002 and 
Woudt & Warner 2002). The presence of two observed peaks with frequencies u1 and u2 

in the upper part of the power spectrum became a natural starting point in modeling the 
phenomena. In NS binaries, for example Sco X-1, the lower frequency part of the power 
spectrum, contains two horizontal branch oscillation (HBO) frequencies VHBO N 45 Hz and 

N 90 Hz (probably the second harmonic of U H B O )  which slowly increase with the 
increase of v1 and v2 (van der Klis et al. 2000). A n y  plausible model faces the challenging 
task of describing the dependences of the peak separation Av = u2 - v1 o n  u1 and v2 . 
Attempts have been made to relate v1 and u2 and the peak separation Au = v2 - v1 with 
the neutron star (NS) spin. In the sonic point beat frequency model by Miller, Lamb & 
Psaltis (1998) the kHz peak separation Av is considered to be close to  the NS spin frequency 
and thus Au is predicted to be constant. However observations of kHz QPOs in a number 
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of binaries (Sco X-1, 4U 1728-34, 4U 1608-52, 4U 1702-429 and etc) show that the peak 
separation decreases systematically when the high [kilohertz (kHz)] frequencies increase (for 
a recent, review see van der Klis 2000, hereafter VDK). For Sco X-1 VDK found that the 
peak separation of kHz QPO frequencies changes from 320 Hz to 220 Hz when the lower kHz 
peak v1 changes from 500 Hz to 850 Hz. 

The correlation between high frequency (lower kHz frequency) and low frequency (broad 
noise component) QPOs previously found by Psaltis, Belloni & van der Klis (1999) for 
black hole (BH) and neutron star (NS) systems has been recently extended over two orders 
of magnitude by Mauche (2002) to white dwarf (WD) binaries. Accepting the reasonable 
assumption that the same mechanism produces the QPO in WD, NS and BH binaries, one 
can argue that the data exclude relativistic models and, beat frequency models as well as any 
model requiring either the presence or absence of a stellar surface or  a strong magnetic f ield.  

The transition layer model (TLM) was introduced by Titarchuk, Lapidus & Muslimov 
(1998), hereafter TLM98, to explain the dynamical adjustment of a Keplerian disk to the 
innermost sub-Keplerian boundary conditions (it is at the star surface for NSs and WDs). 
TLM98 argued that a shock should occur where the Keplerian disk adjusts to the sub- 
Keplerian flow. Thus the transition layer bounded between the sub-Keplerian boundary and 
the adjustment radius can undergo various type of oscillations under the influence of the 
gas, radiation, magnetic pressure and gravitational force. Osherovich & Titarchuk ( 1999), 
hereafter OT99, suggested that the phenomological model of a one-dimensional classical 
oscillator in bhe rotational frame of reference could explain the observed correlations between 
twin kHz frequencies vl, v;! and the HBO frequencies. They further suggested that the 
oscillations of the fluid element that bounced from the disk shock region (at the adjustment 
radius) would be seen as two independent oscillations parallel and perpendicular to the disk 
plane respectively. This is due to the presence of a Coriolis force in the magnetospheric 
rotational frame of reference. In this paper I show that when the pressure gradients can 
be neglected, the problem of the Rayleigh-Taylor wave oscillations (buoynancy effect) in 
the rotational frame of reference is reduced to the OT99 formulation (see 33). This result 
provides a solid basis for application of the OT99 model for interpretation of the QPO 
phenomena observed in X-ray binaries. 

The main goal of this Paper is to  demonstrate that there is an inevitable effect of 
the gravity wave oscillations in the heterogeneous fluid of the accretion flow near compact 
objects. In $2, I formulate the problem of the gravity wave propagation in the bounded 
medium in the rotational frame of reference. In 33 I present analysis and solutions of this 
problem using a perturbation method in the context of three dimensional periodic waves 
with assigned wave numbers. Applications of the gravity modes and their relations with the 
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QPO observations is presented in $4. Summary and conclusions are drawn in $5 .  

2. The Problem of Gravity Wave Propagation in a Bounded Medium 

Lord Rayleigh (1883) has treated the non-rotating inviscid case of the present problem. 
He developed a general theory for any density.configuration po(z) (the z axis being the 
upward drawn vertical). Rayleigh’s treatment of inviscid superposed fluids was extended 
by Bjerkness et al. (1933) to include the influence of rotation. With an assumption of the 
gravitational force directed vertically, Hide (1956) developed the theory for any density po(z) 
and viscosity ,uo(z) profiles and any S (where S is an angle between the rotational axis and 
the vertical). In this study we consider a case of an inviscid and incompressible fluid. 

The equation of relative motion appropriate to the problem is 

where the fluid is supposed to rotate uniformly about, an axis whose direction is specified by 
the unit vector s = n/R. The t,ensor notation follows the summat,ion convention and the 
unit vector e in the radial direct.ion is introduced. In equation (1) p denotes the density, 52 
the angular velocity of rotation, ui the it,h component of the (Eulerian) velocity vector, p is 
the pressure and g is the acceleration due to gravity. This t,erm g can represent the effective 
gravity which includes the centrifugal and radiation pressure forces. For an incompressible 
fluid the continuity equation is - 

8 U  1 
- = 0. 
dXi 

Because (similar to C6l)diffusion effects are ignored in this analysis, an individual fluid 
element ret.ains the same density throughout its motion. Hence it is required that 

DP - a P  dP -- - +uj- = 0. 
Dt dt  d X j  

(3) 

Because the equilibrium situation in the comoving frame is a static one it is characterized 
by ui = 0. We now assume the equilibrium situation to  be slightly disturbed, so that ui # 0. 
So we shall write 

and treat ui, Sp, and Sp  as quantities of the first order of smallness so that products of such 
quantities can be ignored. 



We are interested in the study of the gravity wave oscillations in the disk transition layer 
where the accretion flow is sub-Keplerian and the temperature of the flow is of order 5 keV 
or more (see cartoon diagram of the system in Titarchuk, Osherovich & Kuznetsov 1999, 
hereafter TOK, Fig. 1). These temperatures of order of 5 keV are a representative values 
for plasma temperatures inferred from X-ray spectra during kHz QPO events (see more in 
Titarchuk, Bradshaw & Wood 2001 and Titarchuk & Wood 2002). 

At this stage we introduce the Cartesian coordinate system. We take the z axis to be in 
the direction of the (upward) vertical and the x axis to be such that the (2, z )  plane contains 
the angular velocity vector R which then has components (Ox, 0, a,). In the general case 
the gravitational force has components g(x/R, y/R, z / R )  where R = (x2 + y2 + z 2 ) 1/2 . 

If (u, v, w) are the components of the velocity u, then on substituting in equations ( I ) ,  
(2) and (3) we find 

dU 6P 
Po- at - 2poR,v = -- 6X - gzsp, 

dV 6P 
at 6Y 

dW 6P 

Po- - 2POQXW + 2poOJL = -- - g,6p, 

S d P ,  po- at + 2poRxv = -- 6z - 
du dv dw -+  -+  - = 0, ax dy d z  

ap0 dpo apo - +u- +v- +w- = 0. at dX dY d Z  
(9) 

One can see that the variation of p is ignored in all terms except for t,he ones representing 
the buoyancy force (see C61 for details). 

3. Analysis of various types of the solutions of the problem 

In order to illustrate the buoyancy (R-T) effect we consider bhe simplest solutions of 
the problem including those which already exist in the literature. 

Case A 

In the case when we allow the vector R to rotate around the z axis at angle 6, we 
introduce the cylindrical coordinate system, namely taking the z axis in the direction of the 
(upward) vertical, the IC axis as the radial axis and the y axis as the azimuthal axis in the 
horizontal plane. Then the vector R has components (0 sin 6, 0 ,O  cos 6) and gravitational 
force vector has components g(r/R,  0, z / R )  where T = (x2 + ?J 2 ) 1/2 . 
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(I) With assumptions that po is only a function of R the scale height of po is order of 
R we obtain that 6p = [(dp/dz)dx + (dp /dz)dz)  N po/R[(r/R)x + (z/R)5] where x = dz,  
< = dz are the radial and vertical components of displacement respectively and conse- 
quently the radial and vertical components of the perturbation velocity are u = dx/dt, 
w = d</dt. Thus the vector G = 6p(gz,0,g,) is transformed into G = po(g/R)[(r/R)(rX/R+ 
zCIR), 0, (z/R)(rx/R + z</RI. 

Furthermore if we neglect the effects of pressure gradients, the set of equations (5-7) 
can be reduced to the system where the right hand side consists of only the vector G. Then, 
for radial, azimuthal and vertical displacements x, Y, this system takes the form: 

2 - 2Rcos6T = -(g/R)(r/R)(rx/R + zC/R), 
T + 2~ cos - 2~ sin 6( = 0, 

C + 2 ~ s i n 6 Y  = -(g/R)(z/R)(rx/R + ZC/R) .  

(10) 

(11) 

(12) 

OT99 have already analyzed the solution of Eqs. (10-12) (see Eqs. 2-4, in OT99) in the 
case of z / R  << 0 and 6 << 1. They found that in the rotational frame of reference, the 
radial oscillation with the main frequency WK = (g/R)'/2 is split to the oscillations taking 
place near the horizontal (disk) plane (xT) with the hybrid frequency wh = (wk + 4R2)'/2 
and to oscillations taking place near the vertical plane (Y<) with the low branch frequency 
WL = 2fl(wK/wh) sin 6. 

For z - T the dispersion equation for the frequency w 

wp[w4 - 2(w: + 2w2)w2 + wf + 4 ~ ~ w :  + 2 ~ ~ w :  sin 261 = o (13) 

besides the nonoscillatory mode (w = 0), describes two oscillatory eigenmodes. For 6 << 1 
they are w1 = w* = (g/2R)'/p = WK/&' and wp = (w: + 4R2)'/' = (w$/2 + 4R2)'/2. 

The relation of the model eigenfrequencies V L  = w ~ / 2 7 r ,  VK = WK/27r and vh = wh/27r 
with the QPO observed frequencies: horizontal branch oscillation freqiencies vHBo, kHz 
frequencies were studied by OT99; TOK, Kuznetsov & Titarchuk (2002); and Titarchuk 
(2002), hereafter T02. It is worth noting that the relation between V I ( ,  0, v h  and V L  predicts 
the existence of the invariant quantity 6. (e.g. Titarchuk & Osherovich 2001). TO2 calculated 
6 and its uncertainty of 6 finding that the inferred 6-values are consistent with being constant 
at least for four Z sources, Sco X-1, GX 340+0, GX 5-1, GX 17+2 (see more on this issue 
in section $4). 

(11). With assumptions that g A p  << 1 and lVpl << 1 the set of equations for x, Y, < is similar 
to Eqs (10-12) where the right hand side vector is the zero vector, 0 = (0, O 7  0). In this case 
the dispersion equation for w ( for small 6 << 1) 

w"w2 - 4R2) = 0 (14) 
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has the only one nontrivial root w = 2fl  which is related to the eigenmode oscillations taking 
place parallel t o  the disk (XT)-plane. We discuss the application of this solution to the 
observation in section 54. 

Case B 

If we do not neglect the pressure gradient and assume the vertical gravitational force 
and the vector 0 directed along the vertical (6 = Oo),  then the entire problem (Eqs. 5-9) is 
reduced to set of equations which have already been analyzed by Chandrasekhar in C61. He 
studied two cases: (1) In the case of two uniform fluids separated by a horizontal boundary 
he showed that for two adjacent, hydrostatic, inviscid fluids, the low fluid having density p1 

and the upper layer having density p2 the eigenfrequency VR-T was 

where VO is the frequency in the absence of rotation. The frequency vo is of order of VK = 
(g/R>'l2 if the k-wave number (VO depends on k and density difference A p  = p2 - p1) of 
order R-l and A p / ( p l  + p2) - (0.5 - 1). 

For a stratified medium of density p = Coexp(pz), where 1/p is the scale height, the 
R-T instability occurs for positive p, whereas stable gravity waves occur for negative p. The 
R-T frequency VR-T = vh = [vi + 4 ( f l 2 / 2 ~ ) ~ ] ~ / ~  if one assumes that the wave number k is 
of order of d-' - H-' (where d is a layer size). It is worthwhile to emphasize that even 
in the simplest case of the vertical gravitational force (C61) the hybrid frequency vh is an 
eigenfrequency (which is also true for the case with no pressure gradient effects, see above). 
Formula (10) for VR-T can also be reduced to vh if one assumes that VO N 2(0/27r). 

Case C 

Now we consider the case when the vector 52 rotates uniformly around the vertical at 
angle S, then the gravitational vector G = dp(gr/R,O,zg/R), also taking into account the 
pressure effects. The general case of G = Sp(gx, gy, gz) can be analyzed in a similar way and 
it will be presented elsewhere. Following the usual practice in problems of this kind, we seek 
solutions of equations (5-9) which are of form (see e.g. C6l) 

u,  v, w, Sp. Sp = constant x exp(ik,x + ik,y + ik,z + nt), (16) 

where kx, k, and k, are the horizontal and vertical wave numbers of the harmonic perturba- 
tions respectively. We also assume that po = f(x)p(z) is a function of x (or T )  and z which 
the scale heights are l / y  and 1/,B for radial and vertical density profiles respectively, T R. 
Upon substituting for u, v, w, dp, 6 p  in the form (16) equations (5) to (8) become 

nu - 2Rzv = -ik,(Sp/po) + guy /n  + gwp/n, (17) 
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We also use the relation nSp + (yu + pw)po = 0 which follows from Eqs. (9) and (16) in 
order to express 6p through po, u and w .  The set of equation (17-20) assumes a nontrivial 
solution only if the determinant of the syst.em D’= 0. This equation provides the dispersion 
relation for the determination of n: 

4 2 P(n)  = u4n + a2n + a1n + a0 = 0, 

3.1. Stable gravity modes 

The specific wave values k,, k,, k ,  are determined by the conditions imposed on the 
oscillatory domain boundary. Thus for a given set of boundary conditions the analysis of the 
R-T instability is reduced to the analysis of the roots of of fourth order algebraic equation 
( 2 1 ) ,  which depends on the main parameters of the atmosphere, p, y and ratio of the wave 
numbers k z / k x .  We assume that z / R  < 1 and IC,, k, 0: 1/R, k,  oc 1 / z  is the case of interest. 

Figure 1 illustrates the specific behavior of the polynomial P(n) which should help one 
to understand the presence (or absence) of its roots for given coefficient ao, al, a2 (a4 > 0 ,  
a3 = 0) .  For example, if a0 < 0, a1 < 0 and a2 > 0 (see case i below) then P(n)  has two 
complex conjugate roots n1,2 = C f i q  and two real rook 123, n4 (in fact, d2P/dn2 > 0). 
Because a1 < 0, the absolute value of the positive root n4 is larger than that of the negative 
one n3. But a3 is a sum of the polynomial (real and complex conjugate) rook, and because of 
a3 = nl+n2+n3+n4 = 0 one can come t,o conclusion that 2c = -(n3+n4) < 0. Therefore (in 
this case) the stable oscillatory mode exists and n 1 , 2  are related to these damped oscillations. 

Below we present all cases with the oscillatory stable solutions: 

Case i: p, P l y  > 0 ,  P l y  - k z / k z  < 0 and a2 > 0 (see Fig. 1, curve i). For such 
conditions a0 < 0 and a1 < 0. Then equation (21)  has two real roots which relate to the 
unstable (growing) and stable (decaying) modes with one pair of complex conjugate roots 
corresponding to the stable oscillatory mode: 
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where wh = [(/a21 + d)/2a4I1I2 and d = (a; - 4 ~ a o ) l / ~ .  These roots of equation (21) are 
found using the sequential approximation method: first we solve equation (21) with a1 = 0, 
f i  and then in the next stage we look for roots of equation (21) as n = ?I, + a. 

Case ia: ,O, P/r > 0, ,O/r - k , / k ,  < 0 and a2 < 0. For such conditions a0 < 0 and 
a1 < 0. Equation (21) has just one pair of the complex conjugate roots and two real roots 
which relate to the unstable (growing) and stable (decaying) modes (see Fig. 1, curve ia). 
The oscillatory mode n1,2 is stable for which we have 

n1,2 M a1/2d f iwL, (23) 

where W L  = [(-la2/ + d)/2a4I1j2. 

Case ib: ,O > 0, ,O/r < 0, ,O/r - k , / k ,  < 0. For such conditions a0 < 0 and a1 < 0 
and a2 > 0. This case is similar to case i (see Fig 1, curve i) when equation (21) has two 
real roots which relate to the unstable (growing) and stable (decaying) modes arid complex 
conjugate roots which correspond to the stable oscillatory mode: 

n1,2 M a1/2d f iwh. (24) 

Case ii: 0 > 0,  - k z / k z  > 0. For such conditions a0 > 0 and a1 < 0 and a2 > 0. 
Equation (21) has a pair of complex conjugate roots (see Fig. 1, curve ii) and one of them 
n1,2 is related to the stable oscilla.tory mode: 

n1,2 M a1/2d f iwll. (25) 

Case iii: ,O < 0, P l y -  k, /kz  > 0, and a2, d > 0. For such conditions a0 > 0 and a1 > 0. 
Equation (21) has a pair of complex conjugate roots (see Fig. 1, curve iii) and one of them 
723.4 is related to the stable oscillatory mode: 

where W L  = [(a2 - d ) / 2 ~ 4 ] ' / ~ .  

Finally, we single out the case when the effective gravitational force goes to zero. This 
can happen during a burst event, when the gravitational forces are compensated by the 
radiation pressure forces (e.g. Titarchuk 1994). For such conditions, ao, al t 0 and a2/a4 = 
4[(k,/k)R,/k+ (k,/k)R2,]2. Equation (21) has zero roots n = 0 and conjugate complex roots 

n1.2 = fi(a2/a4)'/2 = *2i[(k,/k)~, + (~,/Ic)R,] (27) 

which are related to a pure harmonic mode. In fact, this result also follows from treatments 
detailed in C61 and OT99. The hybrid frequency then becomes simply vh = 2(52/27r) for 
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g = 0. This case of the perfect coherent oscillations would also occur if the density profile 
is quasi-uniform i.e. when p, y --+ 0 but P l y  = O(1). These two conditions (on either the 
effective gravity force or the density profile) can be realized during the burst event. 

In this section the main goal is to reveal all cases when stable gravity modes exist 
and when the stability breaks down. This analysis is particularly important in a view of the 
transient nature of QPO features (see e.g. Zhang et al. 1998). With an increase of bolometric 
luminosity (presumably in mass accretion rate) the kHz QPO frequency increases and then 
entirely disappears! At low rates it appears once again! The stability analysis presented 
here leads to conditions for the existence and the destruction of gravity modes in terms of 
density profiles scale heights p-l, y-' and boundary conditions ( k z ,  ky I C z ) .  In fact, the 
strong dependence of the gravity wave stability on the density profile was a central point of 
Chandrasekhar's analysis (C61). For the accretion disk cases, we can give an example where 
stable gravity modes are followed by instabilities (t,he gravity mode destruction). In case 
(ib) we have a stable mode with wh as a QPO frequency. When the density profile changes, 
over z-coordinate from y < 0 to  y > 0 then the stable g-mode with wh can still be sustaned 
[see case (ia)], But if the density profile over z coordinate is stabilized (0 < 0) and that over 
r coordinate is inverted (i.e. from y < 0 to y > 0) then the QPO oscillations are no longer 
stable. 

4. Gravity modes and their relation to QPO phenomenon 

As we have seen in the previous section, there are two stable oscillatory gravity modes: 
one is associated with the hybrid frequency W h  (see cases i ,  ib ,  i i) and another with the low 
branch frequency wL (cases in and iii). We also estimate the decay rate for oscillations as 
X = lnlI/d and the QPO quality value Q = w/2X. The presence and absence of these modes 
depend on the atmospheric structure (scale height inverses p and y) and on the imposed 
boundary conditions (wave numbers IC,, IC,  and k,). Furthermore, it is possible to  restore the 
related boundary conditions if one compares the observed QPO features with the calculated 
mode frequencies and Q-values. The analysis made in section 3 is also necessary in order to  
control an accuracy of numerical calculations of the set of hydrodynamical equations (5-9). 

To illustrate the results obtained in 53 we should specify the orders of the introduced 
quantities k,, ICy, k , ,p,y.  Namely we assume that k,  - 1/R, ICy - 1/R, IC,  - . l /z,y - q/R 
(where IqI < 1) and z / R  < 1. If we also assume that p/y-kZ/IC, - R/z  then ,B - 2q/z.  With 
these assumptions expressions for the polynomial coefficients aj (see Eq. 21) are significantly 
simplified: ao/u4 - q2wi ,  U I / Q  - -2lqlwi(zR,/R + R,), U ~ / Q  - 4(zR,/R + RZ)2 + qwi.  
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Because IqI < 1 and WK < Wh we can calculate WL as 

TOK introduced the classification scheme for the QPO features and related the observed 
high and low kHz frequencies to the hybrid and Keplerian frequencies, vh = wh/27r and 
VK = ~ 4 2 7 ~  respectively. They also attributed the hectohertz frequencies detected in the 
atoll source 4U 1728-34 (Ford & van der Klis 1999) to the low branch. The angle 6 was found 
to be almost twice that found in Sco X-1 (see also TO2 for details of 6- determination). The 
low frequencies in atoll sources (as a rule) are three times higher than those in the Z-sources. 
The hectohertz frequencies have been identified in several other neutron star LMXBs (4U 
0614+09; van Straaten et al. 2000,2002; SAX J1808.4-3658,4U 1705-44; Wijnands & van der 
Klis 1998). They weakly depend on the kHz frequencies, their ratio to low kHz frequency 
being about (4-5) (van Straaten et al. 2002, hereafter S02). The hectohertz frequency 
Lorentzian profile are very broad with Q-values around 1 or even less. We suggest that these 
observed frequencies can be identified as the low branch frequencies (see formulas 28-29). 
Taking into account resonance effects (T02), we correct the error bars of the hectohertz 
frequencies presented in S02. In Figure 2 the best fit to the data (S02) is presented using 
formula (28) which includes one fit parameter q. The best-fit value of (41 = 0.3 for which 
x : ~ ~  = 0.76. The estimated Q' 1/2 are also in agreement with the observed values of Q (S02, 
Table 2). 

The harmonic modes Whm = 2(k,R, + k,R,) can be related to a coherent oscillation 
frequency of 582 Hz which is observed in 4U 1636-53 during the superburst (Strohmayer & 
Markwardt 2002). If k z / k z  >> 1 (which is our case) Whm is a double frequency of the NS spin 
frequency. Furthermore, we have already found the same eigenmode with the frequency 2S-2 in 
case (AII) when effects of the buoynant forces and pressure gradients are neglect'ed (see $3). 
In fact, Miller (1999) has reported the det'ection of the coherent pulsa.tions of frequency N 291 
Hz during the burst development in 4U 1636-53. Thus the NS spin frequency Rl27r = 291 
Hz and the double NS spin frequency 2R/27r = 582 Hz have probably been detected in 4 U  
1636-53. 

It is also worth noting that the RXTE observations of neutron binaries establish that 
the kHz QPO frequencies do not seem to exceed beyond a certain upper limit (Zhang et al. 
1998). This observational effect may be a result of the density profile. Our stability analysis 
presented in 53 clearly indicates such a possibility (see also C61). 
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5.  Conclusions 

I have presented a detailed study of the Rayleigh-Taylor (R-T) instability in the accre- 
tion flow. To summarize I have :(1) put forth arguments to explain the QPO phenomena, as 
a result of the R-T effect in the rotational frame of reference. (2) formulated and solved the 
mathematical problem of the gravity wave propagation (R-T effect) in the accretion flow. 
(3) concluded that the stable gravity modes in the rotational frame of reference are related 
to the hybrid and low branch frequencies. (4) demonstrated that the particular problem of 
the gravity waves in the rotational frame of reference, in the approximation of very small 
pressure gradients, is reduced to the problem of the classical oscillator in the rotational frame 
of reference which was previously introduced and applied for the interpretation of kHz QPO 
observation by OT99. 

I demonstrate that these frequencies are intrinsic features of the R-T effect. They ap- 
pear in various configurations of the accretion flow depending on assumptions regarding the 
density profiles, the boundary conditions and the effects of the pressure forces. I t  is not by 
chance the high and low frequencies phenomenon has common observational appearances for 
a wide range of objects classes from black hole sources down to  white dwarfs (Mauche 2002). 
(5) Investigated the conditions for the density profile and the wave numbers (boundary con- 
ditions) when the gravity modes are stable. (6) Identified the observed QPO frequencies 
seen in the power density spectra of NS LMXBs using the inferred gravity mode frequencies. 
In particular, I found that the inferred low branch frequencies and their Q-values are consis- 
tent with the QPO hectohertz frequencies observed in the atoll sources 4U 1728-34 and 4U 
0614+19. (7) During the NS long (super) burst event, I find that the observer should see 
oscillations at double NS spin frequency. The Coriolis force is the only force which acts in 
the rotational frame of references and its presence causes perfect coherent pulsations with a 
frequency twice of the NS spin frequency. 

Finally one can conclude that the R-T gravity wave oscullations must be present and the 
related QPOs should be detected in any system where the gravity, buoynancy and Coriolis 
force effects cannot be excluded (even in the Earth and solar environments). 

L.T. acknowledges fruitful discussions with Chris Shrader and Kent Wood. I also ap- 
preciate the fruitful discussions with the referee and his/her constructive evaluation of the 
manuscript. 
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Fig. 1.- Behavior of the dispersion polynomial P(n) for stable gravity modes (see text). 
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Fig. 2.- Correlation between the lower kHz frequency and hectohertz frequency for 4U 
1728-34 (star), 4U 0614+09 (triangles) (van Straaten et al. 2002) and the best-fit curve of 
low branch frequency vs Keplerian frequency (solid line). x : ~ ~  = 0.76 for lql = 0.3. 


